Learning action models from plan examples using weighted MAX-SAT

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning action models from plan examples using weighted MAX-SAT

AI planning requires the definition of action models using a formal action and plan description language, such as the standard Planning Domain Definition Language (PDDL), as input. However, building action models from scratch is a difficult and time-consuming task, even for experts. In this paper, we develop an algorithm called ARMS (action-relation modelling system) for automatically discoveri...

متن کامل

Learning Action Models from Plan Examples with Incomplete Knowledge

AI planning requires the definition of an action model using a language such as PDDL as input. However, building an action model from scratch is a difficult and time-consuming task even for experts. In this paper, we develop an algorithm called ARMS for automatically discovering action models from a set of successful plan examples. Unlike the previous work in action-model learning, we do not as...

متن کامل

Solving MAX-SAT and Weighted MAX-SAT Problems Using Branch-and-Cut

We describe a branch and cut algorithm for both MAX-SAT and weighted MAX-SAT. This algorithm uses the GSAT procedure as a primal heuristic. At each node we solve a linear programming (LP) relaxation of the problem. Two styles of separating cuts are added: resolution cuts and odd cycle inequalities. We compare our algorithm to an extension of the Davis Putnam Loveland (EDPL) algorithm and a Semi...

متن کامل

Bayesian network learning by compiling to weighted MAX-SAT

The problem of learning discrete Bayesian networks from data is encoded as a weighted MAX-SAT problem and the MaxWalkSat local search algorithm is used to address it. For each dataset, the per-variable summands of the (BDeu) marginal likelihood for different choices of parents (‘family scores’) are computed prior to applying MaxWalkSat. Each permissible choice of parents for each variable is en...

متن کامل

Learning Actions Models from Plan Examples with Incomplete Knowledge

AI planning requires the definition of an action model using a language such as PDDL as input. However, building an action model from scratch is a difficult and time-consuming task even for experts. In this paper, we develop an algorithm called ARMS for automatically discovering action models from a set of successful plan examples. Unlike the previous work in action-model learning, we do not as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Artificial Intelligence

سال: 2007

ISSN: 0004-3702

DOI: 10.1016/j.artint.2006.11.005